The Crohn's Disease Protein, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMO
نویسندگان
چکیده
BACKGROUND Crohn's disease is an autoimmune inflammatory disorder of the gastrointestinal tract and is characterized clinically by dysregulation of both pro-inflammatory and anti-inflammatory cytokine signaling networks. The function of the Crohn's disease protein, NOD2, highlights the biphasic nature of the pathology of Crohn's disease. NOD2 can both strongly activate and negatively attenuate NF-kB signaling. The biochemical mechanism for this dual function of NOD2 is unknown. RESULTS We demonstrate that NOD2 activation leads to ubiquitinylation of NEMO, a key component of the NF-kB signaling complex. This ubiquitinylation is agonist dependant, and it does not regulate proteosomal destruction of NEMO. We show the NOD2-dependent ubiquitinylation of NEMO is dependent on the scaffolding protein kinase RIP2. Crohn's disease-associated polymorphisms of NOD2 show a decreased ability to bind RIP2, and this decreased ability to bind RIP2 correlates with a decreased ability to ubiquitinylate NEMO. We map the site of NEMO ubiquitinylation to a novel NEMO ubiquitinylation site (Lysine 285) and show that this ubiquityinylation occurs in vivo. Lastly, we show functionally that RIP2-induced ubiquitinylation of NEMO is at least in part responsible for RIP2-mediated NF-kB activation. CONCLUSIONS These data suggest that this novel mode of regulation of the NF-kB signaling pathway could be a factor underlying the pathogenesis of Crohn's disease.
منابع مشابه
MEKK4 Sequesters RIP2 to Dictate NOD2 Signal Specificity
The Crohn's-disease-susceptibility protein, NOD2, coordinates signaling responses upon intracellular exposure to bacteria. Although NOD2 is known to activate NFkappaB, little is known about the molecular mechanisms by which NOD2 coordinates functionally separate signaling pathways such as NFkappaB, JNK, and p38 to regulate cytokine responses. Given that one of the characteristics of Crohn's dis...
متن کاملITCH K63-Ubiquitinates the NOD2 Binding Protein, RIP2, to Influence Inflammatory Signaling Pathways
BACKGROUND The inability to coordinate the signaling pathways that lead to proper cytokine responses characterizes the pathogenesis of inflammatory diseases such as Crohn's disease. The Crohn's disease susceptibility protein, NOD2, helps coordinate cytokine responses upon intracellular exposure to bacteria, and this signal coordination by NOD2 is accomplished, in part, through K63-linked polyub...
متن کاملبررسی نقش جهشهای شایع ژن NOD2 در بیماری کرون
Abstract Background: NOD2 gene located on chromosome 16 (IBD1) is known to have a strong association with Crohn’s disease. Three common polymorphisms of this gene including R702W, G908R, 1007fsinsC, were reported to be frequent in many western populations while rare occurrence of them was observed in eastern countries. The aim of this study was to assess the frequency of these polymorphisms ...
متن کاملInduction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum.
Mutations in the NOD2 gene are strong genetic risk factors for ileal Crohn's disease. However, the mechanism by which these mutations predispose to intestinal inflammation remains a subject of controversy. We report that Nod2-deficient mice inoculated with Helicobacter hepaticus, an opportunistic pathogenic bacterium, developed granulomatous inflammation of the ileum, characterized by an increa...
متن کاملThe Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2
Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004